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Abstract: We have seen a variety of frameworks and methodologies aimed at dealing with non-conformance in 

processes presented in the literature.  These methodologies seek to find discrepancies between process 

reference models and data returned from instances of process enactments.  These range from 

methodologies aimed at preventing deviations and inconsistencies involved in workflow and process 

support systems to the mining and comparison of observed and recorded process data.  What has not been 

presented in the literature thus far is a methodology for explicitly discerning the severity of instances of 

non-conformance once they are detected.  Knowing how severe an instance of non-conformance might 

be, and therefore an awareness of the possible consequences this may have on the process outcome can 

be helpful in maintaining and protecting the process quality.  Subsequently, a mechanism for using this 

information to provide some kind of recommendation or suggested remedial actions relating to the non-

conformance for process improvement has also not been explored.  In this paper we present a framework 

to address both these issues.  A case study is also presented to evaluate the feasibility of this framework. 

1 INTRODUCTION 

Although research has been conducted in detecting 

deviations in processes in the past, very little research 

has been conducted in determining the severity of the 

non-conformance detected.  Knowing the severity of 

detected instances of non-conformance is useful 

because it provides an indication of its possible 

implications.  Therefore a severity indicator can aid 

in the provision of recommendation information to 

the administrators of the process – another area in 

process improvement in which little work has been 

presented.  In this paper, we seek to provide a 

framework on how the severity of deviations and 

inconsistencies in processes may be ascertained and 

show how this information can be used to provide 

effective recommendations to process administrators. 

 

In order to be successful in detecting non-

conformance and ascertaining its severity, the process 

model must be defined and implemented in a formal 

and robust way.  Informal process definitions result 

in an array of problems with process control, transfer 

of process knowledge and adaptation to change 

(Rombach 1990).   

 

There have been a number of different approaches 

presented in the literature with the goal of detecting 

process deviations.  These include an approach 

presented by Huo, Zhang, Jeffery (2006) based on 

process discovery, where they compare a discovered 

process model to a pre-determined reference model to 

find discrepancies.  Process discovery is a technique 

described in (Cook, Wolf 1998) where process data is 

mined in order to discover the process model from its 

enacted values.  A fuzzy logic approach such as in 

(Cîmpan, Oquendo 2000) was also presented, where 

again the idea is to compare a monitored process 

enactment to a reference model and take test for 

conformance.  Our own research presented in 

(Thompson, Torabi, Joshi 2007) is also aimed at 

detecting inconsistencies and deviations where 

specific values are defined for process activity 

attributes and activity transitions which are tested 

against reference values as they are being recorded. 

 



In this research, we consider a “process” to be a set of 

one or more activities being smaller, simpler units or 

tasks which may be carried out sequentially, 

concurrently, simultaneously, overlapping or in 

parallel (Huo, Zhang, Jeffery 2006), (Rezgui et al. 

1997).  We also assume these activities are assigned 

to actors who are responsible for their enactment 

(Dowson, Nejmeh, Riddle 1990). 

 

The concepts of deviation and inconsistency we adopt 

from (Cugola et al. 1996) where the authors 

distinguish between the two.  We consider the values 

that hold for a given state or activity within a process 

to relate to inconsistencies whereas the conditions 

that define the rules of transition between 

activities/states relate to deviations.  These assertions 

also hold in our previous research presented in 

(Thompson, Torabi, Joshi 2007) which is the test 

system we have implemented this research extension 

into.  When we use these terms, we are referring to 

the concept of “non-conformance” between a process 

prescription and an instantiation of its enactment. 

 

When a “deviation” or “inconsistency” is detected, 

we are measuring the difference between an actual 

system or process variable and its expected value 

(Reese, Leveson 1997).  The magnitude of this 

distance and its likely implications is very useful 

knowledge to a process administrator.  If we are 

fortunate, a deviation may be considered to have only 

trivial consequences to the process goal or conversely 

even positive consequences.  If however, the 

consequences are dire, knowing this promptly can be 

useful knowledge to have in curtailing the possible 

damage. 

 

If we know how severe an instance of non-

conformance is, we can use this information to 

provide useful feedback to the appropriate person.  If 

the degree of non-conformance is minor, perhaps the 

responsible actor should be informed incidentally.  If 

it is critical, a manager in the process or organization 

may need to be informed along with possible 

remedies urgently. 

 

Predictably, processes which are executed more 

frequently are easier to define better boundary values 

for.  These processes are therefore conducive to the 

application of Statistical Process Control (SPC) in 

order to implement better constraints and boundaries 

upon the process activities, as SPC requires a large 

sample of data before SPC can be adequately applied 

(Wang et al. 2006).  The success of Statistical 

Process Control in quality control in production lines 

and manufacturing (Card 1994) saw its expansion 

into other areas, such as food, packaging, electronics 

and software development (Cangussu, DeCarlo, Mathur 

2003).  Back in 1990 Lantzy argued that there was 

bias toward the application of SPC to manufacturing 

processes which are inherently different to the 

dynamic nature and changing parameters involved in 

the software process (Lantzy 1992). Nevertheless, SPC 

has since been successfully applied to the software 

process and has been applied in many worldwide 

high CMM level (4 and 5) organizations (Radice 

2000). 

 

The three sigma gap from the mean used in Statistical 

Process Control provides an excellent mechanism for 

detecting out of control values while triggering very 

few false alarms (Florac, Carleton 1999; Jalote, 

Saxena 2002; Florac, Carleton, Barnard 2000).  It is also 

possible when observing out of control values as 

deviations, to determine exactly how far the value has 

deviated from the control limit, which gives us an 

idea of the deviations severity.  The further the value 

from the control limit, the higher the severity. 

 

Jalote et al (2002) argues that the key problem of 

SPC is to determine the uncommon causes of 

variation in a process such that the performance of 

the process can otherwise be predicted.  The types of 

control charts used in processes may vary depending 

upon how frequent data points are in the process. 

Processes like software processes have infrequent 

data points and so a XmR or U chart is more 

appropriate than for processes used in manufacturing 

where data points are more frequent. 

 

Another methodology to measure the process is the 

“six-sigma” methodology aimed at reducing defects 

in a given process such that it becomes as near 

perfect as possible.  A process with six-sigma quality 

is a process with no more than 3.4 defects per 1 

million opportunities, where an opportunity is a 

chance for the process to not conform (VanHilst, Garg, 

Lo 2005; Ferrin, Miller, Muthler 2005).  Investment in 

improving a process beyond six-sigma is thought not 

to be cost-effective (VanHilst, Garg, Lo 2005). 

 

The approach presented in this paper has two distinct 

goals.  Firstly, we provide a framework for how 

severity may be measured in process inconsistencies 

and deviations both for numeric and non-numeric 

data types, which appears in section 2.  Secondly in 

section 3, we show how this information can be 

useful in providing appropriate feedback which can 

be useful for process administrators.  Section 4 

provides an evaluation and conclusion for this paper. 

 



2 SEVERITY 

The notion of “severity” in this research is related to 

the effect non-conformance may have on a process.  

Therefore, we are concerned with not only the 

magnitude of difference between an actual value and 

its expected value, but also the consequences this 

anomaly may have on a) its associated activity (if 

applicable) and b) the process as a whole.  We tackle 

this problem by first calculating the margin of 

difference in its own right, and then applying 

modifiers to the initial severity depending on the 

importance of the underlying values within the 

process, which is explained in section 2.3. 

 

Given the distinction between the concepts 

“inconsistency” and “deviation” cited in (Cugola et 

al. 1996), determining severity in each is handled 

slightly differently.  The initial severity rating of 

numeric and non-numeric data must be determined 

differently given the nature of the data.  The major 

problem here is calculating the severity of both data 

types in such a way that the resulting severity ratings 

are relative to one another within the scope of the 

process.  Also, as we explained in (Thompson, 

Torabi, Joshi 2007), deviation data is always related 

to the transition of process activities and therefore 

always “non-numeric” in nature.  Inconsistency data 

however may be numeric in nature and also can 

related to the process as a whole, not just specific 

activities.  Examples of process wide inconsistency 

types from (Thompson, Torabi, Joshi 2007) include 

instances such as “too many exceptions” or “illegal 

activity count”. 

 

In the interests of simplicity, every deviation and 

inconsistency detected may be given a simple rating 

when first detected, according to the scale portrayed 

in figure 1: 

 

 
Figure 1 – Severity Scale 

 

If for some reason, a deviation or inconsistency is 

detected but the severity is indeterminable, we rate it 

“NA”.  Otherwise we rate it according to the scale 

shown in figure 1 with a default rating of “Average”.  

The method used in calculating these severity ratings 

for both numeric and non numeric data types is 

explained in sections 2.1 and 2.2.  This first step 

differentiates our model from any similar approach 

such as in (Cîmpan, Oquendo 2000) where the fuzzy 

gap between the instantiated process and the model is 

apparent but not explicitly recognized. 

 

2.1 Numeric Data Severity 
 

For numeric oriented data types, it is a simple matter 

of placing boundaries and calculating whether or not 

an actual value is within them and if not, how far it is 

outside.  If a large amount of data is available, 

Statistical Process Control is an excellent method in 

both placing the boundaries and calculating how far 

outside actual values might be (Florac, Carleton 

1999).  If there is not enough data available, we must 

set our own boundaries as best we can. 

 

If there is enough data for SPC to be adequately 

applied, ascertaining severity of the deviation 

becomes a simple matter of measuring how many 

standard deviations the actual value returned is from 

the boundary.  We can then apply an appropriate 

severity value based on the scale shown in previously 

in figure 1.  If there is not an adequate amount of data 

to apply SPC, we need to calculate the level of 

severity of the out-of-bounds value by comparing the 

difference between the actual value and the boundary.   

 

Care must be taken however, when deciding whether 

there is enough data present or not to rely on 

boundary values supplied by an SPC calculation.  

Our research presented in (Thompson, Torabi 2007) 

showed that rather a large amount of data was 

necessary before SPC may be adequately applied, and 

the point at which this threshold is reached is not 

always clear and always dependent on the nature of 

the particular process. 

 

2.2 Non-Numeric Data Severity 
 

In (Thompson, Torabi, Joshi 2007), in order to 

determine if an inconsistency had taken place with 

non-numeric data, we compared the actual value 

against a list of accepted values.  If the actual value 

did not match any of the values represented in the 

accepted values list, an inconsistency was flagged.  

To expand on this, for non-numeric list types we 

introduce another list of unacceptable return values 

and an appropriate severity value for each.  An 

example of this concept is illustrated in figure 2, 

where we are checking for activity actor type 

inconsistencies. 

 



 
Figure 2 – Value Lists 

 

If a value is returned which is not in either the 

“Acceptable” or “Unacceptable” list, a deviation will 

still be flagged but with an initial (before modifiers) 

severity rating of NA.  We can therefore ease the 

workload involved in second guessing all possibilities 

of unacceptable return values.  Any unexpected 

“unacceptable” values returned that initially have the 

NA severity rating can easily be re-rated later at the 

whim of the process administrator. 

 

In (Thompson, Torabi, Joshi 2007) conditions were 

specified by SQL checks on a relational database to 

test whether or not a condition holds.  Deviations 

were recorded when either a condition was expected 

to hold but did not, or a condition was expected not to 

hold, but did.  These conditions were sorted into 

related “condition sets” which specify the conditions 

in which a process activity can legally begin and 

terminate.  An example of a condition set for the 

activity of a bank teller approving a bank deposit is 

illustrated below in figure 3 (taken from (Thompson, 

Torabi, Joshi 2007)).   

 

 
Figure 3 – Condition Set Example 

 

In terms of severity, a severity rating is simply 

included with each condition set.  If a deviation 

occurs because of one or more condition sets failing 

in an activity, then the severity of the deviation 

becomes the severity value of the condition set with 

the associated highest severity rating. 

 

 

2.3 Modifiers 
 

Once we have determined the severity of a deviation 

or inconsistency in its own right, we must then 

determine a) the severity of the impact this may have 

on its associated activity and b) the impact this may 

have on the process as a whole. 

 

For deviations and inconsistencies relating to process 

activities, the illustration shown in figure 4 shows 

how we can set the importance activities may hold in 

the process and how this can modify the overall 

severity of the detected deviation or inconsistency:  

 

 
Figure 4 – Activity Importance Modifiers 

 

For inconsistency types that hold for the entire 

process and are not related to any specific activity, 

the Activity Importance Modifier shown in figure 4 

may be applied to the inconsistency data to give an 

importance rating with respect to the process, as 

though it was an activity in itself. 

 

3 RECOMMENDATION 

Once we have sufficient information about a 

deviation or inconsistency including a) that it has 

actually occurred (been detected), b) what part of the 

process it occurred in, c) when it occurred and d) the 

severity in relation to the process, we can feed this 

information to a simple type of “recommender 

system” to provide useful feedback to the 

administrator(s) or people involved in the enactment 

of the process.  The actual implemented algorithm for 

the recommender system here may be susceptible to 

change, as some algorithms will perform better for 

different data sets (Herlocker et al. 2004) and different 

processes will return different sets of data. 

 

Our approach incorporates a non-conformance log 

which records deviations and inconsistencies and 

which serves several purposes.  If a process is 

enacted and a deviation/inconsistency is detected, we 

can record all relevant data in a history log which is 

related to a resolutions table which records 



information on its resolution.  The table is structured 

as shown in figure 5: 

 

 
Figure 5 – Non-Conformance Logs 

 

This non-conformance log provides several benefits 

to the process administrator.  Firstly, we can query a 

list of unresolved deviations/inconsistencies from the 

table for any given process ranked by their severity 

for the process administrator to address.  The 

Resolutions log also provides the capacity to enter 

data on how past entries were resolved, who resolved 

them and how successful the resolution was.  Using 

the data in both tables we can extrapolate possible 

effective solutions to unresolved deviations and 

inconsistencies by matching them with similar 

resolved cases which had a high success rating, an 

important concept in recommender systems (McNee, 

Riedl, Konstan 2006).  Lastly, because all instances of 

non-conformance are logged, it makes it easy to tell if 

one particular type of non-conformance or even 

specific activity or whole process seems to be 

experiencing more than its fair share of entries in the 

non-conformance table.  

 

In the literature presented so far in this area of 

research, a recommendation system of any kind 

resulting from detection of an instance of non-

conformance has not been published.  Therefore, 

comparison with related works in regard to post non-

conformance recommendations is somewhat limited 

in this instance. 

 

4 EVALUATION 

To evaluate this methodology we have developed an 

extension to the implementation used to evaluate the 

framework for non-conformance detection presented 

in (Thompson, Torabi, Joshi 2007).  To test the 

compatibility of our two deviation systems, we have 

simulated numerous instances of the bank deposit 

process also presented in (Thompson, Torabi, Joshi 

2007).   

 

 

 

 

4.1 The Test Process 
 

The process we have used to evaluate this model is 

the same as we described in (Thompson, Torabi, 

Joshi 2007).  We have simulated a simple process of 

how a person may deposit an arbitrary amount of 

cash in their bank account via a bank teller.  A run 

down of the process is illustrated below in figure 6 

which is incidentally also taken from (Thompson, 

Torabi, Joshi 2007).  This straightforward process is 

used to test the methodologies and techniques 

described in this paper in a simple setting where the 

return data can be easily understood and evaluated in 

comparison to our expected results. 

 

 
Figure 6: The Bank Deposit Process 

 

The implementation used to simulate and test this 

process was developed using a C# .NET engine 

which was built to cater for the simulation of generic 

processes with generic activities.  The example 

process was prescribed and constrained in a manner 

consistent with our methodology using this engine 

and all process data was contained in a relational 

database.  Although a single database was used, the 

related tables within it are structured in three tiers – 

one to contain the prescribed reference constraints, 

rules and boundaries, another to structure recorded 



instances of enacted process data and lastly a log to 

record detected instances of non-conformance along 

with their severity.  Since all relevant data was stored 

in a relational database, all comparisons between 

reference and actual data were made via SQL queries.  

The inter-related tables within the database are 

illustrated in figure 7 which depicts the three tiers of 

data tables (image is partially modified from 

(Thompson, Torabi, Joshi 2007)): 

 

 
Figure 7: Framework Structure 

 

4.2 Results 
 

In terms of the non-numeric data, the return of 

expected results is easily identifiable because the 

methodology is simply a comparison of actual data to 

a list and each entry in the list has a severity value 

attached to it.  The algorithm implemented was to 

check the accepted values list first and look for an 

entry identical to the actual return value.  If the value 

was not found, it then checks the unacceptable values 

list.  If the actual return value was found in this list, it 

returns the associated severity rating and if not, an 

inconsistency is still recorded along with a severity 

rating of “NA”.  This is easily verifiable in the 

framework and we succeeded in identifying examples 

of both cases. 

 

To simulate numeric data severity instances, such as 

time duration values, instead of attaching one 

min/max range to the data we attached three range 

sets.  Further from our discovery reported in 

(Thompson, Torabi 2007) of just how large a dataset 

is required to adequately apply SPC ranges, each 

boundary value in each of the three ranges is user 

defined and applied in a manner consistent with what 

is shown in figure 8: 

 

 
Figure 8: Numeric Ranges 

 

The implemented framework only has to check the 

actual numeric return value against the boundary 

constraint values specified.  If the actual value falls 

into a range that is not “acceptable” then it receives 

the applicable severity rating and an instance of non-

conformance is recorded.  For example, as part of the 

simulation twenty runs of the “Fill Out Deposit 

Form” were conducted and the time taken to 

complete the activity compared against the specified 

severity constraints.  This data is illustrated in figure 

9 below: 

 

 
Figure 9: Example Simulated Data 

 

The recommendation engine proved the most difficult 

to implement and at present the mining of the 

recorded data still needs improvement in our future 

work.  However, given the structure of the non-

conformance and resolutions log, the simplest way to 

find the most effective resolution for an instance of 

non conformance is to list all records in the non-

conformance table with the same ActivityID, 

ProcessID and DeviationType as the record we are 

attempting to find a resolution for.  Then, we match 

these records against those in the resolutions table 

where the resolution success rating is highest.  At 

present we are rating the success of resolutions out of 

10 in the implementation, so the recommendations 

system implemented so far is limited to a simple 

query which returns the most successful related 

resolution for a given deviation. 

 

4.3 Future Work 
 

The methodology presented here is relatively simple 

to implement and test, so the results we wanted and 

expected were easy to achieve simulating the test 

process.  Our immediate future work in this area will 

be predominantly in 2 areas: dynamic severity 



boundaries and better data mining for the 

recommender system.  

 

We would like to examine further the development of 

dynamic severity thresholds to the boundary values 

of both numeric and non-numeric data types.  This 

would aid the process administrator in automatically 

calculating severity thresholds so he or she does not 

have to set them manually.  Also, we believe that 

given better querying and data mining methods, the 

data we are storing in the resolutions and non-

conformance log could lead to better 

recommendations being generated when instances of 

non-conformance are detected. 

 

5 CONCLUSION 

In this paper we have presented a practical 

framework to ascertain severity in generic processes 

along with a basis for providing recommendations 

based on the resulting severities and process history.  

This framework is aimed at extending the research 

presented in detecting process non-conformance and 

is implemented as such.  This body of work shows 

promise in its application to processes across 

different domains such as business, software or 

manufacturing processes – as long as the process is 

structured and there is ample opportunity for 

observing the relevant data.  With this in mind, it is 

difficult for any kind of process improvement 

mechanism to be employed if the process in question 

cannot be properly observed.  As stated in section 4, 

our future research in this field will entail an 

improved and more comprehensive mechanism for 

recommendation provision and also a mathematically 

formal model for severity determination. 
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