
DETERMINING SEVERITY AND RECOMMENDATIONS IN

PROCESS NON-CONFORMANCE INSTANCES
Preparation of Camera-Ready Contributions to ICSOFT Proceedings

Sean Thompson, Torab Torabi
Department of Computer Science and Computer Engineering, La Trobe University, Bundoora, Australia

sean@nostin.com, T.Torabi@latrobe.edu.au

Keywords: Process improvement, process severity, recommender systems, process non-conformance, non-

conformance detection

Abstract: We have seen a variety of frameworks and methodologies aimed at dealing with non-conformance in

processes presented in the literature. These methodologies seek to find discrepancies between process

reference models and data returned from instances of process enactments. These range from

methodologies aimed at preventing deviations and inconsistencies involved in workflow and process

support systems to the mining and comparison of observed and recorded process data. What has not been

presented in the literature thus far is a methodology for explicitly discerning the severity of instances of

non-conformance once they are detected. Knowing how severe an instance of non-conformance might

be, and therefore an awareness of the possible consequences this may have on the process outcome can

be helpful in maintaining and protecting the process quality. Subsequently, a mechanism for using this

information to provide some kind of recommendation or suggested remedial actions relating to the non-

conformance for process improvement has also not been explored. In this paper we present a framework

to address both these issues. A case study is also presented to evaluate the feasibility of this framework.

1 INTRODUCTION

Although research has been conducted in detecting

deviations in processes in the past, very little research

has been conducted in determining the severity of the

non-conformance detected. Knowing the severity of

detected instances of non-conformance is useful

because it provides an indication of its possible

implications. Therefore a severity indicator can aid

in the provision of recommendation information to

the administrators of the process – another area in

process improvement in which little work has been

presented. In this paper, we seek to provide a

framework on how the severity of deviations and

inconsistencies in processes may be ascertained and

show how this information can be used to provide

effective recommendations to process administrators.

In order to be successful in detecting non-

conformance and ascertaining its severity, the process

model must be defined and implemented in a formal

and robust way. Informal process definitions result

in an array of problems with process control, transfer

of process knowledge and adaptation to change

(Rombach 1990).

There have been a number of different approaches

presented in the literature with the goal of detecting

process deviations. These include an approach

presented by Huo, Zhang, Jeffery (2006) based on

process discovery, where they compare a discovered

process model to a pre-determined reference model to

find discrepancies. Process discovery is a technique

described in (Cook, Wolf 1998) where process data is

mined in order to discover the process model from its

enacted values. A fuzzy logic approach such as in

(Cîmpan, Oquendo 2000) was also presented, where

again the idea is to compare a monitored process

enactment to a reference model and take test for

conformance. Our own research presented in

(Thompson, Torabi, Joshi 2007) is also aimed at

detecting inconsistencies and deviations where

specific values are defined for process activity

attributes and activity transitions which are tested

against reference values as they are being recorded.

In this research, we consider a “process” to be a set of

one or more activities being smaller, simpler units or

tasks which may be carried out sequentially,

concurrently, simultaneously, overlapping or in

parallel (Huo, Zhang, Jeffery 2006), (Rezgui et al.

1997). We also assume these activities are assigned

to actors who are responsible for their enactment

(Dowson, Nejmeh, Riddle 1990).

The concepts of deviation and inconsistency we adopt

from (Cugola et al. 1996) where the authors

distinguish between the two. We consider the values

that hold for a given state or activity within a process

to relate to inconsistencies whereas the conditions

that define the rules of transition between

activities/states relate to deviations. These assertions

also hold in our previous research presented in

(Thompson, Torabi, Joshi 2007) which is the test

system we have implemented this research extension

into. When we use these terms, we are referring to

the concept of “non-conformance” between a process

prescription and an instantiation of its enactment.

When a “deviation” or “inconsistency” is detected,

we are measuring the difference between an actual

system or process variable and its expected value

(Reese, Leveson 1997). The magnitude of this

distance and its likely implications is very useful

knowledge to a process administrator. If we are

fortunate, a deviation may be considered to have only

trivial consequences to the process goal or conversely

even positive consequences. If however, the

consequences are dire, knowing this promptly can be

useful knowledge to have in curtailing the possible

damage.

If we know how severe an instance of non-

conformance is, we can use this information to

provide useful feedback to the appropriate person. If

the degree of non-conformance is minor, perhaps the

responsible actor should be informed incidentally. If

it is critical, a manager in the process or organization

may need to be informed along with possible

remedies urgently.

Predictably, processes which are executed more

frequently are easier to define better boundary values

for. These processes are therefore conducive to the

application of Statistical Process Control (SPC) in

order to implement better constraints and boundaries

upon the process activities, as SPC requires a large

sample of data before SPC can be adequately applied

(Wang et al. 2006). The success of Statistical

Process Control in quality control in production lines

and manufacturing (Card 1994) saw its expansion

into other areas, such as food, packaging, electronics

and software development (Cangussu, DeCarlo, Mathur

2003). Back in 1990 Lantzy argued that there was

bias toward the application of SPC to manufacturing

processes which are inherently different to the

dynamic nature and changing parameters involved in

the software process (Lantzy 1992). Nevertheless, SPC

has since been successfully applied to the software

process and has been applied in many worldwide

high CMM level (4 and 5) organizations (Radice

2000).

The three sigma gap from the mean used in Statistical

Process Control provides an excellent mechanism for

detecting out of control values while triggering very

few false alarms (Florac, Carleton 1999; Jalote,

Saxena 2002; Florac, Carleton, Barnard 2000). It is also

possible when observing out of control values as

deviations, to determine exactly how far the value has

deviated from the control limit, which gives us an

idea of the deviations severity. The further the value

from the control limit, the higher the severity.

Jalote et al (2002) argues that the key problem of

SPC is to determine the uncommon causes of

variation in a process such that the performance of

the process can otherwise be predicted. The types of

control charts used in processes may vary depending

upon how frequent data points are in the process.

Processes like software processes have infrequent

data points and so a XmR or U chart is more

appropriate than for processes used in manufacturing

where data points are more frequent.

Another methodology to measure the process is the

“six-sigma” methodology aimed at reducing defects

in a given process such that it becomes as near

perfect as possible. A process with six-sigma quality

is a process with no more than 3.4 defects per 1

million opportunities, where an opportunity is a

chance for the process to not conform (VanHilst, Garg,

Lo 2005; Ferrin, Miller, Muthler 2005). Investment in

improving a process beyond six-sigma is thought not

to be cost-effective (VanHilst, Garg, Lo 2005).

The approach presented in this paper has two distinct

goals. Firstly, we provide a framework for how

severity may be measured in process inconsistencies

and deviations both for numeric and non-numeric

data types, which appears in section 2. Secondly in

section 3, we show how this information can be

useful in providing appropriate feedback which can

be useful for process administrators. Section 4

provides an evaluation and conclusion for this paper.

2 SEVERITY

The notion of “severity” in this research is related to

the effect non-conformance may have on a process.

Therefore, we are concerned with not only the

magnitude of difference between an actual value and

its expected value, but also the consequences this

anomaly may have on a) its associated activity (if

applicable) and b) the process as a whole. We tackle

this problem by first calculating the margin of

difference in its own right, and then applying

modifiers to the initial severity depending on the

importance of the underlying values within the

process, which is explained in section 2.3.

Given the distinction between the concepts

“inconsistency” and “deviation” cited in (Cugola et

al. 1996), determining severity in each is handled

slightly differently. The initial severity rating of

numeric and non-numeric data must be determined

differently given the nature of the data. The major

problem here is calculating the severity of both data

types in such a way that the resulting severity ratings

are relative to one another within the scope of the

process. Also, as we explained in (Thompson,

Torabi, Joshi 2007), deviation data is always related

to the transition of process activities and therefore

always “non-numeric” in nature. Inconsistency data

however may be numeric in nature and also can

related to the process as a whole, not just specific

activities. Examples of process wide inconsistency

types from (Thompson, Torabi, Joshi 2007) include

instances such as “too many exceptions” or “illegal

activity count”.

In the interests of simplicity, every deviation and

inconsistency detected may be given a simple rating

when first detected, according to the scale portrayed

in figure 1:

Figure 1 – Severity Scale

If for some reason, a deviation or inconsistency is

detected but the severity is indeterminable, we rate it

“NA”. Otherwise we rate it according to the scale

shown in figure 1 with a default rating of “Average”.

The method used in calculating these severity ratings

for both numeric and non numeric data types is

explained in sections 2.1 and 2.2. This first step

differentiates our model from any similar approach

such as in (Cîmpan, Oquendo 2000) where the fuzzy

gap between the instantiated process and the model is

apparent but not explicitly recognized.

2.1 Numeric Data Severity

For numeric oriented data types, it is a simple matter

of placing boundaries and calculating whether or not

an actual value is within them and if not, how far it is

outside. If a large amount of data is available,

Statistical Process Control is an excellent method in

both placing the boundaries and calculating how far

outside actual values might be (Florac, Carleton

1999). If there is not enough data available, we must

set our own boundaries as best we can.

If there is enough data for SPC to be adequately

applied, ascertaining severity of the deviation

becomes a simple matter of measuring how many

standard deviations the actual value returned is from

the boundary. We can then apply an appropriate

severity value based on the scale shown in previously

in figure 1. If there is not an adequate amount of data

to apply SPC, we need to calculate the level of

severity of the out-of-bounds value by comparing the

difference between the actual value and the boundary.

Care must be taken however, when deciding whether

there is enough data present or not to rely on

boundary values supplied by an SPC calculation.

Our research presented in (Thompson, Torabi 2007)

showed that rather a large amount of data was

necessary before SPC may be adequately applied, and

the point at which this threshold is reached is not

always clear and always dependent on the nature of

the particular process.

2.2 Non-Numeric Data Severity

In (Thompson, Torabi, Joshi 2007), in order to

determine if an inconsistency had taken place with

non-numeric data, we compared the actual value

against a list of accepted values. If the actual value

did not match any of the values represented in the

accepted values list, an inconsistency was flagged.

To expand on this, for non-numeric list types we

introduce another list of unacceptable return values

and an appropriate severity value for each. An

example of this concept is illustrated in figure 2,

where we are checking for activity actor type

inconsistencies.

Figure 2 – Value Lists

If a value is returned which is not in either the

“Acceptable” or “Unacceptable” list, a deviation will

still be flagged but with an initial (before modifiers)

severity rating of NA. We can therefore ease the

workload involved in second guessing all possibilities

of unacceptable return values. Any unexpected

“unacceptable” values returned that initially have the

NA severity rating can easily be re-rated later at the

whim of the process administrator.

In (Thompson, Torabi, Joshi 2007) conditions were

specified by SQL checks on a relational database to

test whether or not a condition holds. Deviations

were recorded when either a condition was expected

to hold but did not, or a condition was expected not to

hold, but did. These conditions were sorted into

related “condition sets” which specify the conditions

in which a process activity can legally begin and

terminate. An example of a condition set for the

activity of a bank teller approving a bank deposit is

illustrated below in figure 3 (taken from (Thompson,

Torabi, Joshi 2007)).

Figure 3 – Condition Set Example

In terms of severity, a severity rating is simply

included with each condition set. If a deviation

occurs because of one or more condition sets failing

in an activity, then the severity of the deviation

becomes the severity value of the condition set with

the associated highest severity rating.

2.3 Modifiers

Once we have determined the severity of a deviation

or inconsistency in its own right, we must then

determine a) the severity of the impact this may have

on its associated activity and b) the impact this may

have on the process as a whole.

For deviations and inconsistencies relating to process

activities, the illustration shown in figure 4 shows

how we can set the importance activities may hold in

the process and how this can modify the overall

severity of the detected deviation or inconsistency:

Figure 4 – Activity Importance Modifiers

For inconsistency types that hold for the entire

process and are not related to any specific activity,

the Activity Importance Modifier shown in figure 4

may be applied to the inconsistency data to give an

importance rating with respect to the process, as

though it was an activity in itself.

3 RECOMMENDATION

Once we have sufficient information about a

deviation or inconsistency including a) that it has

actually occurred (been detected), b) what part of the

process it occurred in, c) when it occurred and d) the

severity in relation to the process, we can feed this

information to a simple type of “recommender

system” to provide useful feedback to the

administrator(s) or people involved in the enactment

of the process. The actual implemented algorithm for

the recommender system here may be susceptible to

change, as some algorithms will perform better for

different data sets (Herlocker et al. 2004) and different

processes will return different sets of data.

Our approach incorporates a non-conformance log

which records deviations and inconsistencies and

which serves several purposes. If a process is

enacted and a deviation/inconsistency is detected, we

can record all relevant data in a history log which is

related to a resolutions table which records

information on its resolution. The table is structured

as shown in figure 5:

Figure 5 – Non-Conformance Logs

This non-conformance log provides several benefits

to the process administrator. Firstly, we can query a

list of unresolved deviations/inconsistencies from the

table for any given process ranked by their severity

for the process administrator to address. The

Resolutions log also provides the capacity to enter

data on how past entries were resolved, who resolved

them and how successful the resolution was. Using

the data in both tables we can extrapolate possible

effective solutions to unresolved deviations and

inconsistencies by matching them with similar

resolved cases which had a high success rating, an

important concept in recommender systems (McNee,

Riedl, Konstan 2006). Lastly, because all instances of

non-conformance are logged, it makes it easy to tell if

one particular type of non-conformance or even

specific activity or whole process seems to be

experiencing more than its fair share of entries in the

non-conformance table.

In the literature presented so far in this area of

research, a recommendation system of any kind

resulting from detection of an instance of non-

conformance has not been published. Therefore,

comparison with related works in regard to post non-

conformance recommendations is somewhat limited

in this instance.

4 EVALUATION

To evaluate this methodology we have developed an

extension to the implementation used to evaluate the

framework for non-conformance detection presented

in (Thompson, Torabi, Joshi 2007). To test the

compatibility of our two deviation systems, we have

simulated numerous instances of the bank deposit

process also presented in (Thompson, Torabi, Joshi

2007).

4.1 The Test Process

The process we have used to evaluate this model is

the same as we described in (Thompson, Torabi,

Joshi 2007). We have simulated a simple process of

how a person may deposit an arbitrary amount of

cash in their bank account via a bank teller. A run

down of the process is illustrated below in figure 6

which is incidentally also taken from (Thompson,

Torabi, Joshi 2007). This straightforward process is

used to test the methodologies and techniques

described in this paper in a simple setting where the

return data can be easily understood and evaluated in

comparison to our expected results.

Figure 6: The Bank Deposit Process

The implementation used to simulate and test this

process was developed using a C# .NET engine

which was built to cater for the simulation of generic

processes with generic activities. The example

process was prescribed and constrained in a manner

consistent with our methodology using this engine

and all process data was contained in a relational

database. Although a single database was used, the

related tables within it are structured in three tiers –

one to contain the prescribed reference constraints,

rules and boundaries, another to structure recorded

instances of enacted process data and lastly a log to

record detected instances of non-conformance along

with their severity. Since all relevant data was stored

in a relational database, all comparisons between

reference and actual data were made via SQL queries.

The inter-related tables within the database are

illustrated in figure 7 which depicts the three tiers of

data tables (image is partially modified from

(Thompson, Torabi, Joshi 2007)):

Figure 7: Framework Structure

4.2 Results

In terms of the non-numeric data, the return of

expected results is easily identifiable because the

methodology is simply a comparison of actual data to

a list and each entry in the list has a severity value

attached to it. The algorithm implemented was to

check the accepted values list first and look for an

entry identical to the actual return value. If the value

was not found, it then checks the unacceptable values

list. If the actual return value was found in this list, it

returns the associated severity rating and if not, an

inconsistency is still recorded along with a severity

rating of “NA”. This is easily verifiable in the

framework and we succeeded in identifying examples

of both cases.

To simulate numeric data severity instances, such as

time duration values, instead of attaching one

min/max range to the data we attached three range

sets. Further from our discovery reported in

(Thompson, Torabi 2007) of just how large a dataset

is required to adequately apply SPC ranges, each

boundary value in each of the three ranges is user

defined and applied in a manner consistent with what

is shown in figure 8:

Figure 8: Numeric Ranges

The implemented framework only has to check the

actual numeric return value against the boundary

constraint values specified. If the actual value falls

into a range that is not “acceptable” then it receives

the applicable severity rating and an instance of non-

conformance is recorded. For example, as part of the

simulation twenty runs of the “Fill Out Deposit

Form” were conducted and the time taken to

complete the activity compared against the specified

severity constraints. This data is illustrated in figure

9 below:

Figure 9: Example Simulated Data

The recommendation engine proved the most difficult

to implement and at present the mining of the

recorded data still needs improvement in our future

work. However, given the structure of the non-

conformance and resolutions log, the simplest way to

find the most effective resolution for an instance of

non conformance is to list all records in the non-

conformance table with the same ActivityID,

ProcessID and DeviationType as the record we are

attempting to find a resolution for. Then, we match

these records against those in the resolutions table

where the resolution success rating is highest. At

present we are rating the success of resolutions out of

10 in the implementation, so the recommendations

system implemented so far is limited to a simple

query which returns the most successful related

resolution for a given deviation.

4.3 Future Work

The methodology presented here is relatively simple

to implement and test, so the results we wanted and

expected were easy to achieve simulating the test

process. Our immediate future work in this area will

be predominantly in 2 areas: dynamic severity

boundaries and better data mining for the

recommender system.

We would like to examine further the development of

dynamic severity thresholds to the boundary values

of both numeric and non-numeric data types. This

would aid the process administrator in automatically

calculating severity thresholds so he or she does not

have to set them manually. Also, we believe that

given better querying and data mining methods, the

data we are storing in the resolutions and non-

conformance log could lead to better

recommendations being generated when instances of

non-conformance are detected.

5 CONCLUSION

In this paper we have presented a practical

framework to ascertain severity in generic processes

along with a basis for providing recommendations

based on the resulting severities and process history.

This framework is aimed at extending the research

presented in detecting process non-conformance and

is implemented as such. This body of work shows

promise in its application to processes across

different domains such as business, software or

manufacturing processes – as long as the process is

structured and there is ample opportunity for

observing the relevant data. With this in mind, it is

difficult for any kind of process improvement

mechanism to be employed if the process in question

cannot be properly observed. As stated in section 4,

our future research in this field will entail an

improved and more comprehensive mechanism for

recommendation provision and also a mathematically

formal model for severity determination.

REFERENCES

Cangussu, J.W., DeCarlo, R.A., and Mathur, A.P. 2003.

Monitoring the software test process using statistical

process control: a logarithmic approach. Proceedings of

the 9th European software engineering conference held

jointly with 11th ACM SIGSOFT international

symposium on Foundations of software engineering

ESEC/FSE-11. 28, 5 (September 2003). ACM Press.

Card, D. 1994. Statistical process control for software?

IEEE Software. 11, 3 (May 1994). 95 – 97.

Cîmpan, S., and Oquendo, F. 2000. Dealing with software

process deviations using fuzzy logic based monitoring.

ACM SIGAPP Applied Computing Review. 8, 2

(December 2000). ACM Press.

Cook, J.E., and Wolf, A.L. 1998. Discovering models of

software processes from event-based data. ACM

Transactions on Software Engineering and

Methodology (TOSEM). 7, 3 (July 1998).

Cugola, G., Di Nitto, E., Fuggetta, A., and Ghezzi, C. 1996.

A framework for formalizing inconsistencies and

deviations in human-centered systems. ACM

Transactions on Software Engineering and

Methodology (TOSEM). 5, 3 (July 1996). ACM Press.

Dowson, M., Nejmeh, B., and Riddle, W. 1990. Concepts

for Process Definition and Support. Proceedings of the

6th International Software Process Workshop

(Hakodate, Japan, October 28-31 1990). IEEE

Computer Society Press.

Ferrin, D.M., Miller, M.J., and Muthler, D. 2005. Six

Sigma and simulation, so what's the correlation?

Proceedings of the 37th conference on Winter

simulation (December 2005). WSC '05. Winter

Simulation Conference.

Florac, W.A., and Carleton, A.D. 1999. Measuring the

Software Process: Statistical Process Control for

Process Improvement, Addison-Wesley.

Florac, W.A., Carleton, A.D., and Barnard, J.R. 2000.

Statistical Process Control: Analyzing a Space Shuttle

Onboard Software Process. IEEE Software. 17, 4

(July/Aug 2000). 97 - 106.

Herlocker, J.L., Konstan, J.A., Terveen, L.G., and Riedl,

J.T. 2004. Evaluating collaborative filtering

recommender systems. ACM Transactions on

Information Systems (TOIS). 22, 1 (January 2004).

ACM Press.

Huo, M., Zhang, H., and Jeffery, R. 2006. An Exploratory

Study of Process Enactment as Input to Software

Process Improvement. Proceedings of the 28th

International Conference on Software Engineering

(Shanghai, China, May 2006). ICSE '06. ACM Press.

Jalote, P., and Saxena, A. 2002. Optimum control limits for

employing statistical process control in software

process. IEEE Transactions on Software Engineering.

28, 12 (Dec. 2002), 1126 – 1134.

Lantzy, M.A. 1992. Application of statistical process

control to the software process. Proceedings of the

ninth Washington Ada symposium on Ada:

Empowering software users and developers (July

1992). ACM Press.

McNee, S.M., Riedl, J., and Konstan, J.A. 2006. Work-in-

progress: Making recommendations better: an analytic

model for human-recommender interaction. Extended

abstracts on Human factors in computing systems

(April 2006). CHI '06. ACM Press.

Radice, R. 2000. Statistical Process Control in Level 4 and

Level 5 Software Organizations Worldwide. The

Twelfth Annual Software Technology Conference, Salt

Lake City, Utah, May 4, 2000.

Reese, J.D., and Leveson, N.G. 1997. Software deviation

analysis. Proceedings of the 19th international

conference on Software engineering (May 1997). ACM

Press.

Rezgui, Y., Marir, F., Cooper, G., Yip, J., and Brandon, P.

1997. A Case-Based Approach to Construction Process

Activity Specification. Intelligent Information Systems

(December 8-10, 1997) IIS '97. 293 – 297.

Rombach, H.D. 1990. Specification of software process

measurement. Proceedings of the 5th international

software process workshop on Experience with

software process models (October 1990). IEEE

Computer Society Press.

Thompson, S., Torabi, T., and Joshi, P. 2007. A Framework

to Detect Deviations during Process Enactment. 6th

IEEE International Conference on Computer and

Information Science (Melbourne, Australia, July 11–

13, 2007). IEEE Computer Society Press.

Thompson, S., and Torabi, T. 2007. A Process

Improvement Approach to Improve Web Form Design

and Usability. The 3rd Ubiquitous Web Systems and

Intelligence Workshop (Regensburg, Germany,

September 3-7, 2007). UWSI 2007 Colocated with

DEXA 2007.

VanHilst, M., Garg, P.K., and Lo, C. 2005. Repository

mining and Six Sigma for process improvement.

Proceedings of the 2005 international workshop on

Mining software repositories. 30, 4 (May 2005). MSR

'05. ACM Press

Wang, Q., Jiang, N., Gou, L., Liu, X., Li, M., and Wang, Y.

2006. BSR: a statistic-based approach for establishing

and refining software process performance baseline.

Proceedings of the 28th International Conference on

Software Engineering (Shanghai, China, May 2006).

ICSE '06. ACM Press.

