
Towards Formalizing Resource Based Non-Conformance in Business

Processes

Sean Thompson

La Trobe University

sean@nostin.com

Torab Torabi

La Trobe University

T.Torabi@latrobe.edu.au

Abstract

The research presented in the literature thus far on

process deviations, inconsistencies and general non-

conformance have all been very generic, process wide

methodologies. Their application has also been

limited to one domain, such as the software, business

or manufacturing process. In this paper we

differentiate between activity/general process non-

conformance and resource based non-conformance

which we treat as different and the mechanism for

testing is treated in a different way. This research is

aimed at identifying instances of non-conformance

between an instantiation of a generic process and its

associated process model by examining only the

resources specified and observed. We propose a

conceptual design model illustrated with a simple case

study on this topic which although is not based on a

software engineering process, illustrate simply how

our model can benefit a real world situation across

many domains alongside software engineering.

1. Introduction

A lot of research has been conducted in the

detecting of non-conformance between process

prescriptions and their instantiated enactments. What

has not been addressed in the literature (to our

knowledge) is an examination of non-conformance in

reference to the resources used by processes and the

expected resource usage prescribed in the process

model. There are two immediate benefits in a

framework detecting non-conformance based on

resources such as the one we are presenting in this

paper. Initially, examining the tangible assets relating

to a process both before and after its enactment is

usually an excellent way of judging the value and/or

effectiveness of the process. In most cases, we can

look at what we have on hand before we begin a

process and after it has concluded, hope that we are in

a better position than where we started. Inspection of

any assets which the process has affected is usually a

good way of easily discerning this – regardless of the

process domain. On the second part, it is much easier

to detect non-conformance in something tangible like

process resources than something abstract like actions

in process activities. With this in mind, we present in

this paper a simple framework in which the resources

prescribed can be compared with the resources

actually used to detect non-conformance between a

process specification and its enactment.

There has been research conducted in non-

conformance or “deviation” detection in processes,

mainly onward from the early 1980s [2, 3]. None of

them however, noted an inherent difference as we do

in this paper between the activity domain and the

resource domain in the process. This includes our own

research which has been presented both in [4] and [5].

The approaches seen in the literature so far range from

process discovery style approaches to fuzzy logic style

approaches. Process discovery methodologies such as

the frameworks described in [7] and [8] are based

upon discovering the process model by examining

actual return data from enacted processes. Once the

model is discovered, it may be easily compared with

further enactments to detect discrepancies because the

discovered model should be on the same level as the

enacted/compared model is observed. Methodologies

such as the approach described in [10] are based on

fuzzy logic and fuzzy sets theory also compares a

reference model (which is purported to be a “flawless”

execution) to enactments to detect discrepancies. The

authors note that such a “flawless” execution of the

process seems unlikely or perhaps even impossible

which almost guarantees non-conformance regardless

of how the process is enacted.

Generically speaking, a process is a “set of

logically related tasks formed to achieve a defined …

outcome” as Davenport defines in [17]. According to

[18] and [19] a process may also include machines,

methods, rules, organizational structures, sub-

procedures and computerized tools to aid in achieving

its goal(s). Whilst accepting this assertion, for the

purposes of this research, we define a process as a set

of activities which are the individual tasks of which the

process is comprised. Also included are “the

resources used by activities and the human or

automated actors who perform these activities” [20].

These activities may be enacted simultaneously,

overlapping or in parallel [7], [11] and are assigned to

actors who are charged with the responsibility of

enacting them (as in [12]). Also, to aid in keeping the

framework clean and precise, we have kept resources

as independent as possible and connected them

logically under the process activities, which use,

consume and generate them.

When we refer to non-conformance in this paper,

we are referring to an instance where an enactment of

such a process as defined above does not conform to

its specification. According to Bahrami [6] the

specification for a process should include “the rules,

constraints, attributes, and relationships of the

activities, participants, roles, and informational items

(such as documents) instrumental to the workflow”. It

should also include a definition on how the process

should behave, where the process should be performed

and when. So a good prescription for a process

should not only define the scope of the behavior the

process should follow but also its environment.

There are two types of non-conformance, being

deviations and inconsistencies which are considered

separately. The two concepts are differentiated in [1],

where deviations relate to transition between states or

activities and inconsistencies relate to the values

inherent to states. Therefore, “deviations” are not

relevant to resource non-conformance and hence also

to this body of research as we do not address activity

based non-conformance in this paper. The authors in

[11] state that according to their eServices in Business

Processes model, activities require “resources” for

their enactment. They also imply that humans can be

considered a resource; however they do not define

what they actually mean by the term “resource”. In

this body of research we have conducted, when we

refer to a “resource” we are referring to any tangible

asset that the process consumes or generates to achieve

its purpose. If “activities” are the actions within a

process, then “resources” are what these actions are

applied to, in the scope of this framework.

Although there has been quite a significant amount

of research conducted in the process resources realm,

none of the frameworks presented thus far has aimed

at detecting non-conformance. The research in

relation to process resources in the literature so far

tend to keep to topics like process simulation to

ascertain the most efficient allocation of resources

such as [13] which was tested in a hospital emergency

room or the flexible allocation of limited resources

over a variety of dynamic demands for them as in [14].

Research has been presented on evaluating resource

value with respect to the process or processes they are

associated with as presented by Roy et al [16] in their

paper on IT outsourcing. Experiments have even been

presented like the research presented in [9] where

required resources for a particular process are

deliberately limited so as to force people to find a

more efficient method of achieving the process goal,

which can lead to long term process improvement.

In the coming sections of this paper, we will first

define a resource in the context of this framework and

domain of research in section 2. We will explain what

we mean when we refer to a “resource” and how we

define it conceptually and how we store it in the

model. In section 3 we illustrate the key issues and

challenges we must resolve in order to successfully

detect resource based non-conformance and ultimately

add value to the process we apply this model to. We

explain how the resource definition data needs to be

structured and stored in relation to the rest of the

process prescription in order to address these issues.

Section 4 deals with the actual flow of rules which

compare actual data to the prescription to detect non-

conformance. These rules are defined and a flowchart

of how they should be implemented is given. We then

present a small indicative case study of how such a

framework can be used in real world situations in

section 5. Section 6 concludes the paper and provides

an indication on the way forward with our future

research.

2. Defining a Process Resource

Considering the large amount of work presented in

the literature on resources in general, it is imperative

we define exactly what we are talking about when we

refer to a “resource”. Hu et al [15] suggest that a

resource could be a human, machine or application.

Incidentally, they also consider resources as an entity

which can perform tasks or activities instead of the

other way around as we (and as most others) define it.

In the context of this framework, we consider a

resource to be something tangible that a process may

use during its execution. This enables us to keep a

clean yet comprehensive and concise methodology

when examining a given processes resources.

Intangible resources are attributes associated with

the process that cannot be quantitatively observed like

tangible resources can. We have identified the

following process properties that in some models such

as [11] or [15] may be considered a resource:

- Time Duration: the time constraints we may

place upon a process or its associated activities.

The minimum and/or maximum time duration

they can go on for.

- Time Relative: There may be constraints as to

when a process, its activities or resources may

be invoked. For example, perhaps the pizza

shop is closed after 11pm and so a pizza

making process enactment would be

inconsistent with its model it were to be

performed after this time.

- Humans: In our framework, humans are

characterized as actors to whom the

responsibility of the enactment of a process

activity resides.

- Human Skills: An attribute associated with the

actor and factored into his or her role in

performing the relevant activity.

Although some may contend that these attributes

qualify as resources and should be included in the

model, we have actually considered the

aforementioned concepts and included them in our

extended process model by relating them to the

process activities. As such, they are not explained in

detail in this paper.

Essentially, we have attempted to keep resources as

loosely coupled from the process itself from other

concepts in the model as possible. In our extended

approach, we attack the problem from two separate

angles – the process activity conformance and the

resource conformance. The activities are obviously

closely related to the process however the resources

may not necessarily be, as they exist without the

process and may be used by other processes also.

With that said, our resource class definition is quite

simple and is shown below in figure 1. The method

we use to relate the resources to the process is

explained in further detail in section two.

Figure 1 – Resource Definition

3. Issues Faced

Throughout this section, we will explain the issues

we have identified and addressed with respect to

resource based process non-conformance detection.

These issues and their resolutions will be illustrated by

a simple pizza making example process. Also

explained in this section, is the framework we have

used to relate the resources to the process and how

data is stored using this methodology. The structure

flow of the rules used to make comparisons between

the resource prescription and the actual data is also

explained and formalized. The four subsections in this

section of the paper steps through the issues one by

one and updates the process prescription data structure

incrementally as we address each issue. In the last

subsection 3.4 we illustrate the final data structure that

we will use to prescribe process resources and their

relationship to the process activities which are using

them.

3.1 Relating resources to the process

Consider the class diagram in figure 2 below:

Figure 2 – Class Diagram

The diagram illustrated in figure 2 depicts the

definition for how a process would prescribe the

required resources to be used in its enactment. We

have created an intermediary class called “Resource

Usage” to specify which activities should use which

resources and how they should be used. It is the

prescription information in the “Resource Usage” class

which will be compared against the actual enacted

resource data to detect the non-conformance. This

enables us to easily change how resources can be used

in the process, adding new resources or removing

unneeded ones without touching any actual resource

definitions. We only define how an existing resource

should behave in relation to an existing activity, and

this behavior is constrained to the resource usage

class.

To begin with, we can store the data for

prescribing resource-activity usage as shown in figure

3:

Figure 3 – Beginnings of the Resource to

Activity data relationship

In figure 3, we show a simple mechanism for

relating process activities to resources. Given this data

structure, we can see that the records apparent in the

ResourceUsage table will show which resources are

supposed to be used by which activities. When we

collect actual data on the activities used by a process

then we can define a simple set of rules or queries to

compare the actual data with the prescription data as

shown in figure 3 to determine whether or not the

activity has used the resources it was supposed to and

not used resources it was not supposed to. The rules

for making these comparisons are explained further in

section 4.

3.2 Resource Types

As with most processes, irrespective of their

domain of application, resources will be used in

different ways. The first challenge we addressed in

this model was conceiving a way to represent different

resource types. The first attribute we allocated to

resources was the “consumable” type. Using the pizza

making example, if we can consider “cheese” a

resource inherent to creating that pizza, then this

resource is consumable, because after the pizza is

made we will be left with less available cheese than

which we started. Furthermore, we can also say that

this resource has been consumed as opposed to

generated because we are left with less than we started

with. Conversely, if we consider an activity such as

“buy cheese” in some such process, then the resource

would have been generated because after the

completion of the activity, the amount of the resource

available will have increased.

Now what about resources which are not

consumable? In the same example process, there may

be an activity of the description “cook pizza”.

Suppose in this activity, a required resource may be an

oven. When the activity is over, the same oven will

still be available to this and other processes so it has

not really been consumed as much as used. For these

types of resources, we consider to be non-consumable.

These extra attributes can be added to our

ResourceUsage class as depicted previously in figure

3. Subsequently, as shown in figure 4 below, the

consumable attribute has been added to our definition.

The “Consumable” attribute added to the class can

only have three values: Non-Consumable, Consume

and Generate. These are depicted in the grey box in

figure 4.

Figure 4 – Resource Consumption

In this regard, if a resource is considered to be

consumable i.e. it can generate or consume the

resources it uses, then a minimum and maximum

boundary value can be applied to constrain how many

of the resource a specific activity may consume or

generate. This of course is redundant if the resource is

of type non-consumable.

3.3 Exception Typed Resources

Let’s say, for example, an activity with the

description “sprinkle cheese on the pizza” was

apparent within a process. This activity may use the

resource “Mozzarella” as a standard resource but if

Mozzarella was not available we could use Cheddar.

It could be argued that the quality of the pizza may not

be compromised if an alternate resource was used,

however if it is considered acceptable but not ideal we

classify the resource type as exceptive. The reason for

this is the effect cumulative exceptions may have on

the quality of the outcome of the process. For

example, the same could be said if we used self-raising

flour instead of flour in the making of the pizza, or red

peppers instead of green peppers or tomato sauce

instead of tomato paste. Singularly, these changes

may not make too much of a difference, however all

together collectively these less-than-ideal resource

usages could ruin the quality of the end product.

Therefore, we can include another attribute in our

resource usage class which defines the resource as

being either standard or exception typed. Of course,

some resources will be standard for some processes

and activities and exceptive for others, so the

UsageType is defined in the Resource Usage class,

specifying that a given resource will have a

UsageType applicable only for the relevant activity.

The Usage Type only relates to the resources usage,

not to the resource itself.

Figure 5 – Usage Types

3.4 Shared and Conflicting Resources

The final issue facing the structure of this

framework is how to handle shared and conflicting

resources. Let’s use the “sprinkle cheese on the pizza”

process activity as an example. Suppose this activity

required a resource of “cheese” and there were as a

choice “Mozzarella” as a standard usage type and

“Cheddar” as an exception type available. We need to

implement a mechanism for handling a) if both were

used i.e. if Mozzarella was sprinled on (which would

be legal under the process prescription) and then

Cheddar was used. These resources are in conflict

because the pizza only required one cheese to be

sprinkled yet two were used where, if used separately

would not have been a problem but both used at the

same time yields too much of the resource. The model

needs to recognize and allow for this. Also b) if the

correct amount of “cheese” was used, but it was a

mixture of both resources i.e. some Mozzarella was

used and some Cheddar but the sum of which was an

adequate amount – this is a shared resource.

We have handled this by introducing another

intermediary entity that groups the resource usage

records. This way, for each activity a resource group

can be specified for every resource the activity

requires. Applicable resources in the resource usage

class can then be classified into the group. This

means, however that the attributes added previously in

sections 3.2 and 3.3 have had to be restructured. For

this new structure to work, the Consumable type along

with its associated min and max attributes are now

inherent to the ResourceUsageGroup entity. This is so

we can specify for the activity which resource groups

is required and whether the resource is consumable or

not along with the minimum and maximum usage

boundaries. When the actual resource is related into

the resource group for the activity, the usage type is

unique for that specific resource in each separate

group, so usage type is now inherent to the

ResourceUsageType entity.

This methodology is illustrated with an example in

figure 6 below:

Figure 6 – Resource Usage Groups

Figure 6 shows the complete data structure for

storing resource usage prescriptions in a process. It

also has some dummy data underneath each entity to

illustrate what records may be stored in these tables

and how they would relate to each other in an actual

situation.

4. Comparison Engine

This section is devoted to the sequence of rules we

have implemented to test the predefined process

prescription data structure. These rules have the

purpose of querying the prescription data against

actual process data and detecting instances of non

conformance which is then stored. The “actual”

process data which is recorded and compared with we

call the observed process in concordance with [22].

The rule sequence is presented in two flows which are

generic and applicable to any process which facilitates

our framework. These rule sequence flows define and

illustrate how the rule queries are to be implemented in

order to detect and store instances of non-conformance

between the process prescription and its enactments.

Considering the issues explained in section 3 and

the subsequent framework devised which is based on

it, we now require a flow of rules which compares the

prescription data to the actual data to detect instances

of non-conformance between them. These rules are

generic and apply to any process which adopts this

framework. The rules are structured into two flows

from separate standpoints. The first is a series of

checks based on actual resources observed used within

an activity against the prescription. The second and

simpler flow then checks what was prescribed against

what was observed. These flows are explained

separately in sections 4.1 and 4.2.

4.1 Recording Instances of Non-Conformance

When an instance of non-conformance is identified

in either of these two flows, then a record is made in a

log which stores all non-conformance instances for the

process. We store each record in a data table which

takes the following form as shown in figure 7:

Figure 7 – Non Conformance Log

Although this structure is simple, it facilitates some

useful information about the types of non-conformance

being detected within a process. We can easily see

whether certain non-conformance types are

reoccurring overly much and identify potential trouble

spots in the process prescription with just a cursory

look at the non-conformance data. The paper

presented in [21] notes that “while the importance of a

repository is often acknowledged, the difficulty of

producing an effective tool is often underestimated”.

This is the subject of some research we are presently

conducting with this repository, in how we can take a

repository of useful data such as the one illustrated in

figure 7 and provide a tool to extract beneficial and

meaningful information concerning a given process.

4.2 Checking the observed resource usage

against the prescription

Once, assuming that we have an adequate amount

of actual enacted process data, we need to compare

this data against what was prescribed for the process.

We begin by taking the observed data and comparing

it to the prescription. The aim in this flow is to:

a) detect resources which were used that were not

supposed to be;

b) if the resource was supposed to be used, and it

was a consumable type, it either generated or

consumed the resource as was prescribed; and

c) the amount consumed or generated was within

the boundaries set by the min and max

attributes (if they were set).

The diagram below in figure 8 explains the flow of

rules that we follow to make these checks:

Figure 8 – Flow of Rules 1

In figure 8 above, Q1 is checking whether or not

the observed resource was prescribed at all. If it was,

and we are storing the prescriptive data in a relational

database, then there should be a record in the

ResourceUsageType table with both the activity ID of

the activity we are checking and also the resource ID

that was observed. If not, then the resource was not

prescribed and this is an inconsistency which is

logged.

Q2 in the diagram checks whether or not the

resource was prescribed as being “non-consumable”.

If it was, then we can safely stop the flow here because

the rest of the checks in the flow (Q3 and Q4) relate to

resource prescriptions which are either “generate” or

“consume” usage types.

Q3 checks whether the observed resource usage

was “consumed” if it had a prescribed usage type of

“consume” or alternatively that it was “generated”

when the prescribed usage type was “generate”. If the

prescribed usage type and the observed usage type

match, then we continue on, but if not then we record a

non-conformance instance being a wrong usage type.

The final check in this flow, after everything else

has been confirmed as fine and only if the prescribed

resource type is either “consume” or “generate” is

whether or not the amount consumed or generated is

within the minimum and maximum boundary amounts

prescribed (if prescribed at all).

Along this flow, we record non-conformance

instances as they are detected and upon conclusion, we

begin the second flow which is described in section

4.2.

4.3 Checking the prescription against the

observed resource usage

The second flowchart conversely completes the

non-conformance testing by checking the prescribed

resources for the activity against what has actually

occurred in an attempt to detect omitted resources. It

also checks for conflicting and shared resource

inconsistencies as described previously in section 3.4:

Figure 9 – Flow of Rules 2

The first thing the second flow checks with the Q5

test is whether or not there were any resources that

were prescribed that was not used. The methodology

to perform this is to check every resource that was

prescribed for the activity and then ensure that a

matching resource record is available in the actual

process data. If not, then a resource is missing and

this constitutes an instance of non-conformance and is

recorded.

The Q6 checks in this flow relate to the conflicting

and shared resources described in section 3.4.

Logically, if only one resource from each prescribed

resource group is used, then there can be no shared or

conflicting resource inconsistencies. So, if we detect

that more than one resource in a group has been used

in the enactment then we need to check for this, which

is what Q6a and Q6b performs.

5. Case Study

We chose a simple process with which to test our

initial implementation of this structure, which is a t-

shirt production process. The process involves the

basic steps that the company we have chosen

PHEROMONE™ (also explained in [5]) take in order to

produce t-shirt garments for sale. This process is

simple enough so that the methods, activities and

resources are basic enough to easily and quickly

understand whilst also illustrating how our framework

can be implemented in a real world environment –

albeit not native to the realm of software engineering.

As a basic process overview, the process has certain

characteristics and environmental aspects that should

be mentioned as to properly explain the scope. We

begin with what constitutes 500m of 140GSM 100%

cotton fabric in 5 different colours. We have been

advised that based on the manufacturers experience,

100m of fabric of this type and weight (140GSM

cotton) that approximately 100 t-shirts can be created

in the standard men’s size and using the standard 2:2:1

ratio of 40 large, 40 medium and 20 small – with only

scrap amounts of fabric left over. We also have an

adequate supply of garment labels and swing tickets

which have been pre-purchased and provided to the

manufacturer to attach to each shirt. The manufacturer

has also advised that the thread used to sew each cut

panel of fabric together is trivial and not charged for,

so it is therefore not included in our process model as it

has no impact on the process.

This process can be broken down into the following

basic activities and their associated resources (if any)

as depicted in figure 10:

Figure 10 – Tshirt manufacturing process

Along with the process characteristics which have

been explained in figure 10, there are two immediate

concerns which must be noted when applying our

framework. The first is the resources labeled

“negligible”. In processes such as the aforementioned,

seemingly relevant resources such as cotton thread are

in reality not. This is because of the structure of how

the garments are produced for the company places the

onus of the thread and sewing equipment onto the

external manufacturer who bears this trivial cost in its

entirety. Therefore, a degree of familiarity with the

process and the applicable framework is required in

order to implement a methodology such as ours

successfully.

The second is that a person charged with modeling

the process to a framework such as ours would need to

know certain things about how the process would relate

to the model which are not immediately clear. These

things could include the omitted irrelevant aspects of

the process such as fabric sourcing, logistics, cosmetic

design and printing, washing, pressing etc… or which

resource types should be classified as “negligible” and

also omitted or even process specific characteristics,

such as how the resource which was once 1 meter of

cotton fabric in activity 1 turns into front, back, neck

and sleeve panels, a separately considered resource

used in activity 2.

Fortunately, the run did not experience any

problems and the garments we inspected were of

merchantable quality. However, one potential

consequence became immediately apparent which we

had admittedly foreseen anyway, which was the

critical need for a complementary tool to observe and

record event data from the observed process.

Unfortunately, such a tool would probably need to be

specific to each process we would use our framework

on and thus unfeasible for us to build in a generic

fashion. Despite this, we managed to record manually

and reasonably the required data observed from this

process.

The prescription repository was filled with the

same 4 activities as seen in figure 10, however the

related resource repository was slightly different as

previously explained, beginning with an entry for all

resources to be used throughout the process (whether

presently available or not):

Figure 11 – Resource Repository

With the repository set up like the following, we

can easily and quickly see when resources fall out of

scope. For example, if we make a t-shirt but use more

than 1m of fabric to cut the panels, we can spot the

non-conformance once the activity is complete for that

particular shirt instead of having to wait until the entire

roll of fabric has been used before discovering there is

not enough to complete the job.

Conversely, another benefit of this type of model is

we can see if considerably less fabric is being used

(which incidentally did not happen) than the stipulated

maximum. However the major benefit as we contend

in this paper is on the usefulness of having a proper,

well defined structure which can easily and

definitively compare a prescription to an observation.

Occurrences such as a resource being generated or

consumed when the opposite was prescribed, or

resource usage which is out of range of the

prescription is, using this model quite easily detected.

6. Conclusion and Future Work

In this paper we have outlined a detailed

methodology on how process resources may be

observed and compared using a structured flow of

rules to detect non-conformance between actual

process data and its prescription. This framework is

useful for structuring a process resource usage

prescription in order to easily compare actual process

resource data against it to detect non-conformance,

regardless of how the actual data is returned and

recorded. The logical structure of storing prescription

data was presented and the flow of rules for comparing

the prescription data with the actual data was

described analyzed. We have also provided an

example “pizza cooking” example in order to illustrate

and better explain the model we have implemented as

well as detailing a simple case study in which we

tested the apparent applicability and usefulness of our

methodology.

Further from this research we would like to

formalize this approach in a generic fashion and also

apply the same kind of methodology to process

activities and draw the two approaches together for a

more complete framework for detecting non-

conformance between a process prescription and

actual enactments of it. We would also like to test a

more comprehensive and formal implementation of

this framework on a variety of real world processes

within different domains. We can then analyze the

results to further examine how a methodology such as

the research presented in this paper can be used to

provide useful real life assistance to actual

implemented industrial processes.

References

[1] G. Cugola, E. Di Nitto, A. Fuggetta, C. Ghezzi; “A

framework for formalizing inconsistencies and deviations in

human-centered systems”, ACM Transactions on Software

Engineering and Methodology (TOSEM), Volume 5 Issue 3,

ACM Press, July 1996.

[2] V.R. Basili, F.E. McGarry, R. Pajerski, M.V. Zelkowitz;

“Lessons learned from 25 years of process improvement: the

rise and fall of the NASA software engineering laboratory”,

Proceedings of the 24th International Conference on

Software Engineering, ACM Press, May 2002.

[3] A. Fuggetta, “Software Process: A Roadmap”,

Proceedings of the Conference on The Future of Software

Engineering, ACM Press, May 2000.

[4] S. Thompson, T. Torabi, P. Joshi, “A Framework to

Detect Deviations During Process Enactment”, 6th IEEE

International Conference on Computer and Information

Science, IEEE Computer Society Press, Melbourne,

Australia, July 2007.

[5] S. Thompson, T. Torabi, “A Process Improvement

Approach to Improve Web Form Design and Usability”, The

3rd Ubiquitous Web Systems and Intelligence Workshop

(UWSI 2007) Colocated with DEXA 2007, Regensburg,

Germany, 3-7 September 2007.

[6] A. Bahrami, “Integrated process management: from

planning to work execution”, Proceedings of the IEEE

EEE05 international workshop on Business services

networks BSN '05, IEEE Press, March 2005.

[7] M. Huo, H. Zhang, R. Jeffery, “An Exploratory Study of

Process Enactment as Input to Software Process

Improvement”, International Conference on Software

Engineering, 2006.

[8] J.E. Cook, A.L. Wolf; “Discovering models of software

processes from event-based data”, ACM Transactions on

Software Engineering and Methodology (TOSEM), Volume

7 Issue 3, July 1998.

[9] L.J. Burnell, J.W. Priest, J.R. Durrett; “Reviewed papers:

Assessment of a resource limited process for

multidisciplinary projects”, ACM SIGCSE Bulletin, Volume

35 Issue 4, ACM Press, December 2003.

[10] S. Cîmpan, F. Oquendo; “Dealing with software process

deviations using fuzzy logic based monitoring”, ACM

SIGAPP Applied Computing Review, Volume 8 Issue 2,

ACM Press, December 2000.

[11] Y. Rezgui, F. Marir, G. Cooper, J. Yip, and P. Brandon,

“A Case-Based Approach to Construction Process Activity

Specification”, Intelligent Information Systems IIS '97, 8-10

Dec. 1997, pp. 293 – 297.

[12] M. Dowson, B. Nejmeh, and W. Riddle, “Concepts for

Process Definition and Support”, Proceedings of the 6th

International Software Process Workshop, IEEE Computer

Society Press, Hakodate, Japan, October 28-31 1990.

[13] J. April, M. Better, F. Glover, J. Kelly, M. Laguna,

“Enhancing Business Process Management With Simulation

Optimization”, Proceedings of the 2006 Winter Simulation

Conference, Monterey, California, USA, December 3-6,

2006.

[14] U. Deshpande, A. Gupta, A. Basu, “Adaptive Problem

Solving among Business Organizations through Flexible

Resource Allocation”, International Conference on

Advanced Computing and Communications (ADCOM), 20-

23 Dec. 2006 Page(s):382 – 387.

[15] L. Hu; Y. Hu; “Resource perspectives in the

context of process management of product

development”, 7th International Conference on

Computer-Aided Industrial Design and Conceptual

Design, 2006. CAIDCD '06, 17-19 Nov. 2006 Page(s):

1 – 5.

[16] V. Roy, B.A. Aubert, “A resource-based analysis of IT

sourcing”, ACM SIGMIS Database, Volume 33 Issue 2,

ACM Press, June 2002.

[17] T. Davenport, “Process Innovation: Re-engineering

Work through Information Technolog”y, Harvard Business

School Press, Boston MA, 1993.

[18] A. Blyth, “Business process re-engineering: What is

it?”, ACM SIGGROUP Bulletin, Volume 18 Issue 1, April

1997.

[19] W.A. Florac, A.D. Carleton, Measuring the Software

Process: Statistical Process Control for Process

Improvement, Addison-Wesley, 1999.

[20] A. Caetano, M. Zacarias, A.R Silva, J. Tribolet, “A

Role-Based Framework for Business Process Modeling”,

Proceedings of the 38th Hawaii International Conference on

System Sciences, Hawaii, USA, 2005.

[21] K. Schneider, J.P von Hunnius, “Experience reports:

process and tools: Effective experience repositories for

software engineering”, Proceedings of the 25th International

Conference on Software Engineering ICSE '03, IEEE

Computer Society, May 2003.

[22] K. Mohammed, L. Redouane, C. Bernard, “Processes: A

deviation-tolerant approach to software process evolution”,

Ninth international workshop on Principles of software

evolution: in conjunction with the 6th ESEC/FSE joint

meeting IWPSE '07, ACM Press, September 2007.

